Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Adoptive T cell immunotherapy in combination with gene therapy is a promising treatment concept for chronic infections and cancer. Recently, receptor-targeted lentiviral vectors (LVs) were shown to enable selective gene transfer into particular types of lymphocytes both in vitro and in vivo. This approach might facilitate the genetic engineering of a patient's own T lymphocytes, possibly even shifting this concept from personalized medicine to an off-the shelf therapy in future. Here, we describe novel high-affinity binders for CD8 consisting of designed ankyrin repeat proteins (DARPins), which were selected to bind to the CD8 receptor of human and nonhuman primate (NHP) cells. These binders were identified by ribosome display screening of DARPin libraries using recombinant human CD8 followed by receptor binding analysis on primary lymphocytes. CD8-targeted LVs (CD8-LVs) were then generated that delivered genes exclusively and specifically to human and NHP T lymphocytes by using the same targeting domain. These CD8-LVs were as specific for human T lymphocytes as their single-chain variable fragment-based counterpart, but they could be produced to higher titers. Moreover, they were superior in transducing cytotoxic T cells both in vitro and in vivo when equal particle numbers were applied. Since the here described CD8-LVs transduced primary T lymphocytes from NHP and human donors equally well, they offer the opportunity for preclinical studies in different animal models including large animals such as NHPs without the need for modifications in vector design.

Citation

Annika M Frank, Tatjana Weidner, Julia Brynza, Wolfgang Uckert, Christian J Buchholz, Jessica Hartmann. CD8-Specific Designed Ankyrin Repeat Proteins Improve Selective Gene Delivery into Human and Primate T Lymphocytes. Human gene therapy. 2020 Jun;31(11-12):679-691

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32160795

View Full Text