Correlation Engine 2.0
Clear Search sequence regions


  • 4 and (1)
  • ACE2 (1)
  • al 1 (1)
  • alleles (9)
  • amino acid (7)
  • analysis data (1)
  • antibodies (4)
  • antigens (32)
  • Arab (1)
  • b cell (26)
  • b cell epitopes (23)
  • bats (7)
  • birds (1)
  • bordetella pertussis (1)
  • canada (1)
  • cases (9)
  • catalog (1)
  • cell humans (3)
  • cellular (2)
  • china (4)
  • cluster (1)
  • cold (1)
  • consensus sequence (3)
  • contain (1)
  • coronavirus (8)
  • coronavirus glycoprotein (1)
  • disease outbreaks (1)
  • donors (4)
  • emergencies (1)
  • files (1)
  • g cell (1)
  • gamma (3)
  • genbank (1)
  • gene (1)
  • glycoprotein (26)
  • glycoprotein membrane (1)
  • help (1)
  • host responses (1)
  • human (54)
  • igg (1)
  • igm (1)
  • india (1)
  • infect (2)
  • infect sars cov (1)
  • japan (1)
  • ligand (1)
  • MHC (4)
  • NCBI (32)
  • nucleocapsid (6)
  • nucleocapsid protein (1)
  • nucleoproteins (9)
  • number cell (1)
  • orf (17)
  • ORF10 (1)
  • ORF6 (1)
  • ORF8 (1)
  • outbreak (1)
  • pathogen (6)
  • patient (2)
  • PDB (6)
  • peptides (7)
  • peptides i (1)
  • phosphoprotein (7)
  • pneumonia (1)
  • polyprotein (3)
  • primates (1)
  • probability (4)
  • protein b (4)
  • protein targets (2)
  • proteins t (1)
  • public health (2)
  • r t (1)
  • reagent (2)
  • receptor (3)
  • responses virus (1)
  • rna (1)
  • sars- cov- proteins (9)
  • sars- covs (3)
  • segment (1)
  • sequence analysis (2)
  • south korea (1)
  • strains (1)
  • subunit (2)
  • suggests (1)
  • t cell (16)
  • t cell epitopes (26)
  • taxonomy (1)
  • ten (1)
  • tetramer (1)
  • thailand (1)
  • Tor2 (1)
  • tuberculosis (1)
  • vietnam (1)
  • viral antigens (1)
  • world health (2)
  • Sizes of these terms reflect their relevance to your search.

    Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority. Copyright © 2020 Elsevier Inc. All rights reserved.

    Citation

    Alba Grifoni, John Sidney, Yun Zhang, Richard H Scheuermann, Bjoern Peters, Alessandro Sette. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell host & microbe. 2020 Mar 16;27(4):671-680.e2

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32183941

    View Full Text