Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Neutrophilic inflammation is central to disease pathogenesis, for example, in chronic obstructive pulmonary disease, yet the mechanisms that retain neutrophils within tissues remain poorly understood. With emerging evidence that axon guidance factors can regulate myeloid recruitment and that neutrophils can regulate expression of a class 3 semaphorin, SEMA3F, we investigated the role of SEMA3F in inflammatory cell retention within inflamed tissues. We observed that neutrophils upregulate SEMA3F in response to proinflammatory mediators and following neutrophil recruitment to the inflamed lung. In both zebrafish tail injury and murine acute lung injury models of neutrophilic inflammation, overexpression of SEMA3F delayed inflammation resolution with slower neutrophil migratory speeds and retention of neutrophils within the tissues. Conversely, constitutive loss of sema3f accelerated egress of neutrophils from the tail injury site in fish, whereas neutrophil-specific deletion of Sema3f in mice resulted in more rapid neutrophil transit through the airways, and significantly reduced time to resolution of the neutrophilic response. Study of filamentous-actin (F-actin) subsequently showed that SEMA3F-mediated retention is associated with F-actin disassembly. In conclusion, SEMA3F signaling actively regulates neutrophil retention within the injured tissues with consequences for neutrophil clearance and inflammation resolution.

Citation

Tracie Plant, Suttida Eamsamarng, Manuel A Sanchez-Garcia, Leila Reyes, Stephen A Renshaw, Patricia Coelho, Ananda S Mirchandani, Jessie-May Morgan, Felix E Ellett, Tyler Morrison, Duncan Humphries, Emily R Watts, Fiona Murphy, Ximena L Raffo-Iraolagoitia, Ailiang Zhang, Jenna L Cash, Catherine Loynes, Philip M Elks, Freek Van Eeden, Leo M Carlin, Andrew Jw Furley, Moira Kb Whyte, Sarah R Walmsley. Semaphorin 3F signaling actively retains neutrophils at sites of inflammation. The Journal of clinical investigation. 2020 Jun 01;130(6):3221-3237

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32191647

View Full Text