Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Runx2 (Runt-related transcription factor 2) is a key transcription factor which is associated with osteoblast differentiation and expressed in ER+ (estrogen receptor positive) human breast cancer cell lines. Runx2 also participates in mammary gland development. Deregulation of RNA Pol III genes (polymerase III-dependent genes) is tightly linked to tumor development, while Brf1 (TFIIB-related factor 1) specifically regulates these gene transcription. However, nothing is known about the effect of Runx2 on Brf1 expression and Pol III gene transcription. Expression of Runx2, Brf1 and Pol III genes from the samples of human breast cancer and cell culture model were determined by the assays of RT-qPCR, immunoblot, luciferase reporter activity, immunohistochemistry, chromatin immunoprecipitation and Immunofluorescence. High expression of Runx2 is observed in the cases of breast cancer. The patients of high Runx2 expression at early stages display longer survival period, whereas the cases of high Runx2 at advanced stages reveal faster recurrence. The identification of signaling pathway indicates that JNK1 and c-Jun mediate Runx2 transcription. Repression of Runx2 reduces Brf1 expression and Pol III gene transcription. Further analysis indicates that Runx2 is colocalized with Brf1 in nucleus of breast cancer tissue. Both Runx2 and Brf1 synergistically modulate Pol III gene transcription. These studies indicate that Brf1 overexpression is able to be used as an early diagnosis biomarker of breast cancer, while high Runx2 expression indicates long survival period and faster recurrence. Runx2 mediates the deregulation of Brf1 and Pol III genes and its abnormal expression predicts the worse prognosis of breast cancer. Published by Elsevier B.V.

Citation

Zaifa Hong, Zeng Fang, Junxia Lei, Ganggang Shi, Yanmei Zhang, Zhiming He, Wen Li B, Shuping Zhong. The significance of Runx2 mediating alcohol-induced Brf1 expression and RNA Pol III gene transcription. Chemico-biological interactions. 2020 May 25;323:109057

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32198086

View Full Text