Correlation Engine 2.0
Clear Search sequence regions


  • acetyl coa (1)
  • acetyl phosphate (1)
  • acid (1)
  • actinobacillus (1)
  • al 1 (1)
  • antibodies (8)
  • arabidopsis (1)
  • ArcA (1)
  • asp (1)
  • asp glu (2)
  • bacillus subtilis (1)
  • bacteria (6)
  • beryllium (1)
  • biotin (2)
  • bradyrhizobium (1)
  • burkholderia (1)
  • carbon (2)
  • case (2)
  • cellular (4)
  • chip genes (1)
  • chromatin (1)
  • contain (1)
  • copper (1)
  • cyclic di‐ gmp (1)
  • cyclic‐ gmp (1)
  • data quality (1)
  • desulfovibrio vulgaris (2)
  • dna fragments (5)
  • dna sequences (4)
  • DNase I (1)
  • donors (1)
  • DPI (4)
  • e coli (6)
  • EnvZ (1)
  • escherichia coli (1)
  • essential (5)
  • ethanol (1)
  • factors (1)
  • fall (1)
  • flagella (1)
  • function (10)
  • gene (19)
  • gene fusions (1)
  • gene targets (11)
  • genes expressed (1)
  • genes functions (1)
  • genomes (1)
  • help (1)
  • his3 (4)
  • humans (1)
  • hybrid (5)
  • inhibit (2)
  • insights (5)
  • ionic strength (2)
  • leptospira (1)
  • library dna (1)
  • ligand (5)
  • lipid (1)
  • map genes (2)
  • metal (1)
  • metric (1)
  • mrna (2)
  • mycobacterium tuberculosis (1)
  • NarP (1)
  • native (5)
  • neurospora crassa (1)
  • nitrite (1)
  • nitrogen (1)
  • normal growth (1)
  • oligo (1)
  • oligonucleotides (1)
  • OmpR (1)
  • operons (1)
  • pcr (1)
  • PhoP (1)
  • phosphate (3)
  • phosphoryl (1)
  • pili (1)
  • plant (1)
  • plasmid (1)
  • potassium (1)
  • problem (1)
  • processes (2)
  • protein chip (2)
  • protein mutant (1)
  • pseudomonas aeruginosa (1)
  • pseudomonas stutzeri (1)
  • pyrF (1)
  • qRT (1)
  • random (1)
  • RegR (1)
  • regulon (6)
  • rna (8)
  • rna polymerase (2)
  • scale (4)
  • screen (6)
  • seq (35)
  • shewanella (1)
  • signals (9)
  • streptavidin (2)
  • subunit (3)
  • suggests (1)
  • TCS (26)
  • tuberculosis (6)
  • understand (2)
  • ura3 (3)
  • vibrio (1)
  • weak (2)
  • yeast (2)
  • zinc (1)
  • Sizes of these terms reflect their relevance to your search.

    Studies on bacterial physiology are incomplete without knowledge of the signalling and regulatory systems that a bacterium uses to sense and respond to its environment. Two-component systems (TCSs) are among the most prevalent bacterial signalling systems, and they control essential and secondary physiological processes; however, even in model organisms, we lack a complete understanding of the signals sensed, the phosphotransfer partners and the functions regulated by these systems. In this review, we discuss several tools to map the genes targeted by transcriptionally acting TCSs. Many of these tools have been used for studying individual TCSs across diverse species, but systematic approaches to delineate entire signalling networks have been very few. Since genome sequences and high-throughput technologies are now readily available, the methods presented here can be applied to characterize the entire DNA-binding TCS signalling network in any bacterial species and are especially useful for non-model environmental bacteria. © 2020 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.

    Citation

    Lara Rajeev, Megan E Garber, Aindrila Mukhopadhyay. Tools to map target genes of bacterial two-component system response regulators. Environmental microbiology reports. 2020 Apr 05;12(3):267-276

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32212247

    View Full Text