Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, is highly effective against a broad range of fungal plant pathogens, but at low yields. Elicitation is an effective method of stimulating the yield of bioactive secondary metabolites. In this study, the biomass and filtrate of a culture broth of Escherichia coli JM109, Bacillus subtilis WB600, Saccharomyces cerevisiae, and Fusarium oxysporum f. sp. cucumerinum were employed as elicitors to promote rimocidin production in S. rimosus M527. Adding culture broth and biomass of S. cerevisiae (A3) and F. oxysporum f. sp. cucumerinum (B4) resulted in an increase of rimocidin production by 51.2% and 68.3% respectively compared with the production under normal conditions in 5-l fermentor. In addition, quantitative RT-PCR analysis revealed that the transcriptions of ten genes (rimA to rimK) located in the gene cluster involved in rimocidin biosynthesis in A3 or B4 elicitation experimental group were all higher than those of a control group. Using a β-glucuronidase (GUS) reporter system, GUS enzyme activity assay, and Western blot analysis, we discovered that elicitation of A3 or B4 increased protein synthesis in S. rimosus M527. These results demonstrate that the addition of elicitors is a useful approach to improve rimocidin production.Key Points • An effective strategy for enhancing rimocidin production in S. rimosus M527 is demonstrated. • Overproduction of rimocidin is a result of higher expressed structural genes followed by an increase in protein synthesis.

Citation

Zhangqing Song, Zheng Ma, Andreas Bechthold, Xiaoping Yu. Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus M527. Applied microbiology and biotechnology. 2020 May;104(10):4445-4455

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32221690

View Full Text