Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Few studies have reported the function and activation mechanism of ANO9 in esophageal squamous cell carcinoma (ESCC). The current study aimed to investigate the role of ANO9 in the regulation of tumor progression. Knockdown experiments with human ESCC cell lines were performed using ANO9 siRNA, and the effects on cell proliferation, the cell cycle, apoptosis, and cellular movement were analyzed. Immunohistochemistry (IHC) analysis was performed on 57 primary tumor samples obtained from ESCC patients. In an in vitro study, depletion of ANO9 reduced cell proliferation, invasion, and migration in KYSE150 and KYSE 790 cells. In the cell cycle analysis, depletion of ANO9 increased the number of cells in G0/G1 arrest. In addition, the knockdown of ANO9 increased apoptosis. The results of the microarray analysis indicated that various centrosome-related genes such as CEP120, CNTRL, and SPAST were up- or downregulated in ANO9-depleted KYSE150 cells. The IHC results showed that high expression of ANO9 was associated with poor prognosis. The results of the current study suggest that ANO9 regulates the cell cycle via centrosome-related genes in ESCC.


Keita Katsurahara, Atsushi Shiozaki, Toshiyuki Kosuga, Michihiro Kudou, Katsutoshi Shoda, Tomohiro Arita, Hirotaka Konishi, Shuhei Komatsu, Takeshi Kubota, Hitoshi Fujiwara, Kazuma Okamoto, Mitsuo Kishimoto, Eiichi Konishi, Yoshinori Marunaka, Eigo Otsuji. ANO9 Regulated Cell Cycle in Human Esophageal Squamous Cell Carcinoma. Annals of surgical oncology. 2020 Sep;27(9):3218-3230

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32227267

View Full Text