Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Planar cell polarity (PCP) and neural tube defects (NTDs) are linked, with a subset of NTD patients found to harbor mutations in PCP genes, but there is limited data on whether these mutations disrupt PCP signaling in vivo. The core PCP gene Van Gogh (Vang), Vangl1/2 in mammals, is the most specific for PCP. We thus addressed potential causality of NTD-associated Vangl1/2 mutations, from either mouse or human patients, in Drosophila allowing intricate analysis of the PCP pathway. Introducing the respective mammalian mutations into Drosophila Vang revealed defective phenotypic and functional behaviors, with changes to Vang localization, post-translational modification, and mechanistic function, such as its ability to interact with PCP effectors. Our findings provide mechanistic insight into how different mammalian mutations contribute to developmental disorders and strengthen the link between PCP and NTD. Importantly, analyses of the human mutations revealed that each is a causative factor for the associated NTD. © 2020, Humphries et al.

Citation

Ashley C Humphries, Sonali Narang, Marek Mlodzik. Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila. eLife. 2020 Apr 01;9

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32234212

View Full Text