Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The increasing spread of antibiotic resistant bacteria is a major human health concern. The challenging development of new effective antibiotics has led to focus on seeking synergistic antibiotic combinations. Vancomycin (VAN) is a glycopeptide antibiotic used to treat Staphylococcus aureus and enterococci infections. It is targeting D-Alanyl-D-Alanine dimers during peptidoglycan biosynthesis. D-cycloserine (DCS) is a D-Alanine analogue that targets peptidoglycan biosynthesis by inhibiting D-Alanine:D-Alanine ligase (Ddl). The VAN-DCS combination was found to be synergistic in VAN resistant S. aureus strains lacking van genes cluster. We hypothesize that this combination leads to opposite effects in S. aureus and enterococci strains harboring van genes cluster where VAN resistance is conferred by the synthesis of modified peptidoglycan precursors ending in D-Alanyl-D-Lactate. The calculated Fractional Inhibitory Concentration of VAN-DCS combination in a van- vancomycin-intermediate, VanA type, and VanB type strains were 0.5, 5 and 3, respectively. As a result, VAN-DCS combination leads to synergism in van-lacking strains, and to antagonism in strains harboring van genes cluster. The VAN-DCS antagonism is due to a mechanism that we named van-mediated Ddl inhibition bypass. Our results show that antibiotic combinations can lead to opposite effects depending on the genetic backgrounds. © FEMS 2020.

Citation

Abdelhakim Boudrioua, Yanyan Li, Axel Hartke, Caroline Giraud. Opposite effect of vancomycin and D-Cycloserine combination in both vancomycin resistant Staphylococcus aureus and enterococci. FEMS microbiology letters. 2020 Apr 01;367(8)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32277698

View Full Text