Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

6-phosphofructo-kinase-2/fructose diphosphatase-2 isoenzyme 3 (PFKFB3) is closely related to the growth of many types of cancer cells. Glycolysis not only provides Adenosine triphosphate for the growth of tumor cells, but also protects them from acid products, which is beneficial to the invasion and metastasis of tumors. However, PFKFB3 expression in esophageal squamous cell carcinoma (ESCC) has been scarcely reported. In this study, the role of PFKFB3 was studied in 120 ESCC samples using immunohistochemistry technique (IHC), western blotting, and reverse transcriptase-polymerase chain reaction (RT-PCR). Both PFKFB3 protein and gene expression in ESCC tissues were significantly higher than in adjacent non-tumor tissues (Pā€Š<ā€Š.05). Single factor analysis showed that both PFKFB3 protein and gene expression are related to infiltration depth, stage, tumor metastasis, and the degree of tumor differentiation in ESCC. Multifactor Cox survival analysis revealed that PFKFB3 protein expression, tumor location, tumor metastasis, tumor differentiation degree, and tumor stage were independent factors affecting the overall survival of postoperative patients. Multivariate Cox survival analysis showed that PFKFB3 mRNA has a good performance for predicting 3-year survival of patients with ESCC 0.89 (0.79-0.99), with a sensitivity of 0.85 and specificity of 0.77. Encouragingly, the sensitivity and specificity of PFKFB3 in the diagnosis of early ESCC (stage I and stage II) can reach 87.8% and 91.5%. In conclusion, high PFKFB3 protein and gene expression may be associated with the occurrence, development, and prognosis of ESCC. PFKFB3 could be used to help develop new therapeutic and diagnostic strategies for ESCC patients.

Citation

Junhui Bao, Ya Wu, Limei Wang, Yaqun Zhu. The role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 in esophageal squamous cell carcinoma. Medicine. 2020 Apr;99(15):e19626

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32282711

View Full Text