Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In mitochondrial disorders, short stature and growth failure are common symptoms, but their underlying mechanism remains unknown. In this study, we examined the cause of growth failure of mice induced by nestin promoter-driven knockout of the mitochondrial ubiquitin ligase MITOL (MARCH5), a key regulator of mitochondrial function. MITOL-knockout mice have congenital hypoplasia of the anterior pituitary caused by decreased expression of pituitary transcript factor 1 (Pit1). Consistently, both mRNA levels of growth hormone (GH) and prolactin levels were markedly decreased in the anterior pituitary of mutant mice. Growth failure of mutant mice was partly rescued by hypodermic injection of recombinant GH. To clarify whether this abnormality was induced by the primary effect of MITOL knockdown in the anterior pituitary or a secondary effect of other lesions, we performed lentiviral-mediated knockdown of MITOL on cultured rat pituitary GH3 cells, which secrete GH. GH production was severely compromised in MITOL-knockdown GH3 cells. In conclusion, MITOL plays a critical role in the development of the anterior pituitary; therefore, mice with MITOL dysfunction exhibited pituitary dwarfism caused by anterior pituitary hypoplasia. Our findings suggest that mitochondrial dysfunction is commonly involved in the unknown pathogenesis of pituitary dwarfism. © The Author(s) 2020. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

Citation

Keigo Matsuno, Shun Nagashima, Isshin Shiiba, Keito Taniwaka, Keisuke Takeda, Takeshi Tokuyama, Naoki Ito, Nobuko Matsushita, Toshifumi Fukuda, Satoshi Ishido, Ryoko Inatome, Shigeru Yanagi. MITOL dysfunction causes dwarfism with anterior pituitary hypoplasia. Journal of biochemistry. 2020 Sep 01;168(3):305-312

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32302394

View Full Text