Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

MicroRNAs (miRNA/miRs) serve an important function in the regulation of gene expression, and have been indicated to mediate a number of cellular biological processes, including cell proliferation, the cell cycle, cell apoptosis and cell differentiation. The altered expression of miRNAs has been revealed to result in a variety of human diseases, including glioblastoma multiforme (GBM). The present study indicated an increase in miR‑296‑3p in glioma tumor types compared with normal brain, particularly in the samples from patients with high grade GBM. Antagonizing miR‑296‑3p was demonstrated to induce cell growth arrest and cell cycle redistribution in U251 cells. The miR‑296‑3p antagonist altered the expression of a number of key genes that are involved in cell cycle control, including cyclin D1 and p21. Additionally, the decrease of miR‑296‑3p increased inhibitor of β‑catenin and T cell factor (ICAT) expression, and increased miR‑296‑3p‑inhibited ICAT expression in U251 cells. Bioinformatics analysis indicated that ICAT is a target gene of miR‑296‑3p, which was further validated using a dual‑luciferase reporter assay. Through the regulation of ICAT, the miR‑296‑3p antagonist decreased β‑catenin protein expression and increased the expression of its target genes. Silencing ICAT was indicated to reverse the miR‑296‑3p downregulation‑induced inactivation of Wnt signaling and cell growth arrest in glioma cells. The present study also indicated a negative correlation between ICAT mRNA levels and miR‑296‑3p levels in glioma tumor types. In conclusion, the present study identified an oncogenic function of miR‑296‑3p in glioblastoma via the direct regulation of ICAT.

Citation

Jing Zhou, Guobo Du, Hongmei Fu. miR‑296‑3p promotes the proliferation of glioblastoma cells by targeting ICAT. Molecular medicine reports. 2020 May;21(5):2151-2161

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32323769

View Full Text