Correlation Engine 2.0
Clear Search sequence regions


  • 3 utr (1)
  • apoptosis (6)
  • cadmium (13)
  • gene (1)
  • impairment (2)
  • MIRN122 (1)
  • mirna (1)
  • mirna (3)
  • mrna (1)
  • necrosis (1)
  • pathogenesis (1)
  • PLD1 (10)
  • protein levels (1)
  • proteins rats (1)
  • rats (3)
  • Sizes of these terms reflect their relevance to your search.

    Exposure to cadmium (Cd), a common heavy metal used in industry, can result in long-term chronic toxicity. It has been well characterized that kidneys are the main organs that are targeted by toxicity, which can cause apoptosis, necrosis, and atrophy of renal tubular epithelial cells. However, the molecular mechanisms associated with Cd toxicity remain unclear. In this study, the expression of renal proteins in Sprague-Dawley rats exposed to chronic Cd was analyzed with iTRAQ proteomics. Bioinformatics analysis indicated that phospholipase D1 (PLD1) was significantly underexpressed and may correlate strongly with Cd-induced chronic kidney impairment. Previous studies have shown that PLD1 promotes cell proliferation and inhibits apoptosis, indicating that PLD1 may be implicated in the pathogenesis of kidney injury induced by Cd. Studies in vivo and in vitro all demonstrate that the mRNA and protein levels of PLD1 decrease significantly both in kidney tissue and in proximal tubular cell lines exposed to Cd. Overexpression of PLD1 and its downstream product PA could ameliorate Cd-induced apoptosis. Moreover, we identified that miR-122-5p was a regulatory miRNA of PLD1. miR-122-5p was overexpressed after Cd exposure and promoted cell apoptosis by downregulating PLD1 through binding the 3'UTR of the locus at 1761-1784 nt. In conclusion, our results indicated that PLD1 and its downstream PA were strongly implicated in Cd-induced chronic kidney impairment and could be a novel player in the defense against Cd-induced nephrotoxicity. Copyright © 2020 Ke Huang et al.

    Citation

    Ke Huang, Yaotang Deng, Wenya Yuan, Jian Geng, Guanghai Wang, Fei Zou. Phospholipase D1 Ameliorates Apoptosis in Chronic Renal Toxicity Caused by Low-Dose Cadmium Exposure. BioMed research international. 2020;2020:7091053

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32337269

    View Full Text