Correlation Engine 2.0
Clear Search sequence regions

were identified beginning with the discovery of SARS-CoV in 2002. With the recent detection of SARS-CoV-2, there are now seven human coronaviruses. Those that cause mild diseases are the 229E, OC43, NL63 and HKU1, and the pathogenic species are SARS-CoV, MERS-CoV and SARS-CoV-2 Coronaviruses (order Nidovirales, family Coronaviridae, and subfamily Orthocoronavirinae) are spherical (125nm diameter), and enveloped with club-shaped spikes on the surface giving the appearance of a solar corona. Within the helically symmetrical nucleocapsid is the large positive sense, single stranded RNA. Of the four coronavirus genera (α,β,γ,δ), human coronaviruses (HCoVs) are classified under α-CoV (HCoV-229E and NL63) and β-CoV (MERS-CoV, SARS-CoV, HCoVOC43 and HCoV-HKU1). SARS-CoV-2 is a β-CoV and shows fairly close relatedness with two bat-derived CoV-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21. Even so, its genome is similar to that of the typical CoVs. SARS-CoV and MERS-CoV originated in bats, and it appears to be so for SARS-CoV-2 as well. The possibility of an intermediate host facilitating the emergence of the virus in humans has already been shown with civet cats acting as intermediate hosts for SARS-CoVs, and dromedary camels for MERS-CoV. Human-to-human transmission is primarily achieved through close contact of respiratory droplets, direct contact with the infected individuals, or by contact with contaminated objects and surfaces. The coronaviral genome contains four major structural proteins: the spike (S), membrane (M), envelope (E) and the nucleocapsid (N) protein, all of which are encoded within the 3' end of the genome. The S protein mediates attachment of the virus to the host cell surface receptors resulting in fusion and subsequent viral entry. The M protein is the most abundant protein and defines the shape of the viral envelope. The E protein is the smallest of the major structural proteins and participates in viral assembly and budding. The N protein is the only one that binds to the RNA genome and is also involved in viral assembly and budding. Replication of coronaviruses begin with attachment and entry. Attachment of the virus to the host cell is initiated by interactions between the S protein and its specific receptor. Following receptor binding, the virus enters host cell cytosol via cleavage of S protein by a protease enzyme, followed by fusion of the viral and cellular membranes. The next step is the translation of the replicase gene from the virion genomic RNA and then translation and assembly of the viral replicase complexes. Following replication and subgenomic RNA synthesis, encapsidation occurs resulting in the formation of the mature virus. Following assembly, virions are transported to the cell surface in vesicles and released by exocytosis.


Y A Malik. Properties of Coronavirus and SARS-CoV-2. The Malaysian journal of pathology. 2020 Apr;42(1):3-11

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32342926

View Full Text