Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

We have previously reported the crystal structures of endothelin-1 (ET-1)-bound, ligand-free, and antagonist bosentan-bound forms of the thermostabilized ET type B receptor (ETB). Although other agonist-bound structures of ETB have been determined, the interactions for high-affinity binding and ETB receptor activation, as well as the roles of rearrangement of the hydrogen-bond network surrounding the ligand in G protein activation, remain elusive. ET-1, a 21-amino acid residue peptide, plays fundamental roles in basal vascular tone, sodium balance, cell proliferation, and stress-responsive regulation. We studied the interactions between the ET-1(8-21) peptide and ETB in the ligand binding and activation of ETB using a series of Ala-substituted ET-1(8-21) analogues and the mutated ETB. We found that while D8, L17, D18, I20, and W21 were responsible for high-affinity binding and potent G protein activation, Y13 and F14 in the helical region of ET-1 are prerequisites for the full activation of ETB via interactions near the extracellular side. Furthermore, we introduced the mutation into the residues around the ET-1 binding pocket of ETB. The results showed that while S1843.35, W3366.48, N3787.45, and S3797.46 in a conserved polar network are required for full activation, N1191.50, D1472.50, and N3827.49 are essential for G protein activation via direct interactions after rearrangement upon ET-1 binding. These results demonstrate that both interactions near the extracellular side and within the transmembrane helices with ET-1 play crucial roles in the full activation of the ETB receptor.

Citation

Tomoko Doi, Kohei Kikuta, Kazutoshi Tani. Characterization of Critical Residues in the Extracellular and Transmembrane Domains of the Endothelin Type B Receptor for Propagation of the Endothelin-1 Signal. Biochemistry. 2020 May 12;59(18):1718-1727

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32343134

View Full Text