Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

While triptans are used to treat migraine, there is evidence that they also reduce inflammation-induced pain at the spinal level. The cellular mechanisms underlying this spinal enhancement are unknown. We examined whether inflammation alters sumatriptan modulation of synaptic transmission in the rat spinal dorsal horn. Three to four days following intraplantar injection of complete Freund's adjuvant (CFA) or saline, whole cell recordings of evoked glutamatergic EPSCs were made from lumbar lamina I-II dorsal horn neurons in rat spinal slices KEY RESULTS: In 2- to 3-week-old animals, sumatriptan reduced the amplitude of evoked EPSCs and this was greater in slices from CFA, compared to saline-injected rats. In CFA-injected animals, sumatriptan increased the paired pulse ratio of evoked EPSCs and reduced the rate of spontaneous miniature EPSCs. The 5-HT1B and 5-HT1D agonists CP9 3129 and PNU109291 both inhibited evoked EPSCs in CFA but not saline-injected rats. By contrast, the 5-HT1A agonist R(+)-8-OH-DPAT inhibited evoked EPSCs in saline but not CFA-injected rats. In CFA-injected rats, the sumatriptan-induced inhibition of evoked EPSCs was reduced by the 5-HT1B and 5-HT1D antagonists NAS181 and BRL-15572. Intriguingly, the difference in sumatriptan inhibition between CFA and saline-injected animals was only observed in animals less than 4 weeks old. These findings indicate that inflammation induces a developmentally regulated 5-HT1B/1D presynaptic inhibition of excitatory transmission into the rat superficial dorsal horn. Thus, triptans could potentially act as spinal analgesic agents for inflammatory pain in the juvenile setting. © 2020 The British Pharmacological Society.

Citation

Bryony L Winters, Hyo-Jin Jeong, Christopher W Vaughan. Inflammation induces developmentally regulated sumatriptan inhibition of spinal synaptic transmission. British journal of pharmacology. 2020 Aug;177(16):3730-3743

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32352556

View Full Text