Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Brain glucose-sensing neurons detect glucose fluctuations and prevent severe hypoglycemia, but mechanisms mediating functions of these glucose-sensing neurons are unclear. Here we report that estrogen receptor-α (ERα)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (vlVMH) can sense glucose fluctuations, being glucose-inhibited neurons (GI-ERαvlVMH) or glucose-excited neurons (GE-ERαvlVMH). Hypoglycemia activates GI-ERαvlVMH neurons via the anoctamin 4 channel, and inhibits GE-ERαvlVMH neurons through opening the ATP-sensitive potassium channel. Further, we show that GI-ERαvlVMH neurons preferentially project to the medioposterior arcuate nucleus of the hypothalamus (mpARH) and GE-ERαvlVMH neurons preferentially project to the dorsal Raphe nuclei (DRN). Activation of ERαvlVMH to mpARH circuit and inhibition of ERαvlVMH to DRN circuit both increase blood glucose. Thus, our results indicate that ERαvlVMH neurons detect glucose fluctuations and prevent severe hypoglycemia in mice.

Citation

Yanlin He, Pingwen Xu, Chunmei Wang, Yan Xia, Meng Yu, Yongjie Yang, Kaifan Yu, Xing Cai, Na Qu, Kenji Saito, Julia Wang, Ilirjana Hyseni, Matthew Robertson, Badrajee Piyarathna, Min Gao, Sohaib A Khan, Feng Liu, Rui Chen, Cristian Coarfa, Zhongming Zhao, Qingchun Tong, Zheng Sun, Yong Xu. Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance. Nature communications. 2020 May 01;11(1):2165

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32358493

View Full Text