Correlation Engine 2.0
Clear Search sequence regions


  • copies (1)
  • egypt (3)
  • human (2)
  • human adenovirus (5)
  • rivers (1)
  • rotavirus (5)
  • Sizes of these terms reflect their relevance to your search.

    Environmental monitoring is critical in a developing country like Egypt where there is an insufficient framework for recording and tracking outbreaks. In this study, the prevalence of human adenovirus (HAdV), rotavirus group A (RVA) was determined in urban sewage, activated sludge, drainage water, drainage sediment, Nile water, and Nile sediment, using quantitative polymerase chain reaction (qPCR) analysis. HAdV was detected in 50% of urban sewage with viral concentrations ranging from 103 to 107 genome copies/liter (GC/L), 33% of activated sludge with viral concentrations ranging from 103 to 107 GC/kilogram (GC/kg), 95% of drainage water with viral concentrations ranging from 103 to 107 GC/L, 75% of drainage sediment with viral concentrations ranging from 103 to 107 GC/L, 50% of Nile water with viral concentrations ranging from 103 to 107 GC/L, and 45% of Nile sediment with viral concentrations ranging from 103 to 107 GC/kg. RVA was detected in 50% of urban sewage with viral concentrations ranging from 103 to 107 GC/L, 75% of activated sludge with viral concentrations ranging from 103 to 107 GC/L, 58% of drainage water with viral concentrations ranging from 103 to 107 GC/L, 50% of drainage sediment with viral concentrations ranging from 103 to 107 GC/L, and 45% of Nile water with viral concentrations ranging from 103 to 107 GC/kg. In conclusion, Abu-Rawash WWTP acts as a source of HAdV and RVA, releasing them into El-Rahawy drain then to the River Nile Rosetta branch.

    Citation

    Elmahdy M Elmahdy, Mohamed N F Shaheen, Neveen M Rizk, Amal Saad-Hussein. Quantitative Detection of Human Adenovirus and Human Rotavirus Group A in Wastewater and El-Rahawy Drainage Canal Influencing River Nile in the North of Giza, Egypt. Food and environmental virology. 2020 Sep;12(3):218-225

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32388732

    View Full Text