Correlation Engine 2.0
Clear Search sequence regions


Production of electrospun nanofibrous mats of cyclodextrin inclusion complexes with the incorporation of drug molecules would enable promising designing of fast dissolving delivery systems (FDDS) for oral treatments. Here, the single-step electrospinning technique has been applied to prepare cyclodextrin inclusion complex nanofibrous mats (CD-IC NM) of ferulic acid from complete aqueous systems without using any polymeric matrix. The free-standing ferulic acid/CD-IC NM have been electrospun from two different modified cyclodextrin derivatives of hydroxypropyl-beta-cyclodextrin (HP-β-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD). The initial content of ferulic acid (1/1 ferulic acid/CD (molar ratio) and ~11% (w/w)) has been protected in case of both ferulic acid/CD-IC NM and so the electrospun nanofibrous mats have been fabricated by the ~100% loading efficiency. It has been detected from the in vitro release and disintegration tests that, the amorphous state of ferulic acid based on inclusion complex formation, and the highly porous feature and high surface area of nanofibrous mats have ensured the fast dissolution/release of ferulic acid and disintegration of nanofibrous mats into the liquid medium and artificial saliva. Herein, HP-γ-CD has formed inclusion complexes with ferulic acid more favorably than HP-β-CD and this has leaded to the existence of some un-complexed ferulic acid crystals in ferulic acid/HP-β-CD-IC NM while, ferulic acid has been completely complexed and is in amorphous state in ferulic acid/HP-γ-CD-IC NM. Furthermore, the thermal stability of ferulic acid has been enhanced as an inclusion complexation aid observed by the shift of thermal degradation temperature of ferulic acid from the range of ~120-200 °C to ~140-280 °C. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

Asli Celebioglu, Tamer Uyar. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system. International journal of pharmaceutics. 2020 Jun 30;584:119395

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32407941

View Full Text