Correlation Engine 2.0
Clear Search sequence regions


  • AMPK (1)
  • cell hypoxia (1)
  • cobalt (7)
  • factor (1)
  • Foxo (2)
  • hypoxia (5)
  • MAFbx (1)
  • mice (1)
  • mrna (1)
  • myoblast (6)
  • myogenesis (1)
  • Myogenin (8)
  • protein levels (1)
  • rna (2)
  • signal (1)
  • target protein (1)
  • ubiquitin (1)
  • Sizes of these terms reflect their relevance to your search.

    Cobalt chloride can create hypoxia-like state in vitro (referred to as chemical hypoxia). Several studies have suggested that chemical hypoxia may cause deleterious effects on myogenesis. The intrinsic underlying mechanisms of myoblast differentiation, however, are not fully understood. Here, we show that cobalt chloride strongly suppresses myoblast differentiation in a dose-dependent manner. The impaired myoblast differentiation is accompanied by downregulation of myogenic regulatory factor myogenin. Under chemical hypoxia, myogenin stability is decreased at mRNA and protein levels. A muscle-specific E3 ubiquitin ligase MAFbx, which can target myogenin protein for proteasomal degradation, is upregulated along with changes in Akt/Foxo and AMPK/Foxo signaling pathways. A proteasome inhibitor completely prevents cobalt chloride-mediated decrease in myogenin protein. These results suggest that cobalt chloride might modulate myogenin expression at post-transcriptional and post-translational levels, resulting in the failure of the myoblasts to differentiate into myotubes.

    Citation

    Akira Wagatsuma, Masayuki Arakawa, Hanano Matsumoto, Ryoichi Matsuda, Takayuki Hoshino, Kunihiko Mabuchi. Cobalt chloride, a chemical hypoxia-mimicking agent, suppresses myoblast differentiation by downregulating myogenin expression. Molecular and cellular biochemistry. 2020 Jul;470(1-2):199-214

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32451753

    View Full Text