Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The most dangerous atherosclerotic plaques, referred to as "vulnerable," are most likely to trigger acute atherothrombotic events such as myocardial infarction (heart attack) and stroke. Our goal was to uncover the molecular drivers of vulnerable plaque formation. To elucidate the functional gene modules that drive vulnerable plaque formation, we performed a weighted gene coexpression network analysis integrated with a protein-protein interaction network analysis in human atherosclerotic carotid samples, which identified the candidate gene granulocyte-macrophage colony-stimulating factor 2 (GM-CSF) receptor alpha subunit (CSF2RA). Follow-up in vitro experiments were performed to elucidate the regulatory relationship between CSF2RA and the microRNA miR-532-3p as well as modifiers of macrophagic miR-532-3p-CSF2RA axis expression. Microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR) studies elucidated the effect of statins on carotid miR-532-3p-CSF2RA axis expression in patients with carotid atherosclerotic disease. Apoe-/-, Ldlr-/-, and Csf2ra mutant Apoe-/- mouse models of atherosclerosis were employed to assess the effects of agomiR-532-3p therapy in vivo. The integrated weighted gene coexpression network analysis/protein-protein interaction network analysis revealed that the macrophagic GM-CSF receptor CSF2RA is significantly upregulated in macrophage-rich vulnerable plaques. Follow-up analysis identified the miR-532-3p-CSF2RA axis, as miR-532-3p downregulates CSF2RA via binding to CSF2RA's 3'UTR. Macrophagic miR-532-3p-CSF2RA dysregulation was enhanced via modified low-density lipoprotein or tumor necrosis factor α exposure in vitro. Moreover, this miR-532-3p-CSF2RA dysregulation was observed in human vulnerable plaques and Apoe-/- mouse plaques, effects rescued by statin therapy. In vivo, agomiR-532-3p therapy suppressed murine plaque formation and promoted plaque stabilization in a Csf2ra-dependent manner. Macrophagic miR-532-3p-CSF2RA axis dysregulation is a key driver in vulnerable plaque formation. Copyright © 2020 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

Citation

Rongzhong Huang, Yu Cao, Hongrong Li, Zicheng Hu, Hong Zhang, Lujun Zhang, Wenhua Su, Yu Xu, Liwen Liang, Narayan D Melgiri, Lihong Jiang, Xingsheng Li. miR-532-3p-CSF2RA Axis as a Key Regulator of Vulnerable Atherosclerotic Plaque Formation. The Canadian journal of cardiology. 2020 Nov;36(11):1782-1794

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32473103

View Full Text