Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Helicobacter pylori is the most infectious human pathogen that causes gastritis, peptic ulcers and stomach cancer. H. pylori DNA polymerase I (HpPol I) is found to be essential for the viability of H. pylori, but its intrinsic property and attribution to the H. pylori DNA replication remain unclear. HpPol I contains a 5'→3' exonuclease (5'-Exo) and DNA polymerase (Pol) domain, respectively, but lacks a 3'→5' exonuclease, or error proofreading activity. In this study, we characterized the 5'-Exo and Pol functions of HpPol I and found that HpPol I is a multifunctional protein displaying DNA nick translation, strand-displacement synthesis, RNase H-like, structure-specific endonuclease and exonuclease activities. In the in vitro DNA replication assay, we further demonstrated that the 5'-Exo and Pol domains of HpPol I can cooperate to fill in the DNA gap, remove the unwanted RNA primer from a RNA/DNA hybrid and create a ligatable nick for the DNA ligase A of H. pylori to restore the normal duplex DNA. Altogether, our study suggests that the two catalytic domains of HpPol I may synergistically play an important role in the maturation of Okazaki fragments during the lagging-strand DNA synthesis in H. pylori. Like the functions of DNA polymerase I in Escherichia coli, HpPol I may involve in both DNA replication and repair in H. pylori. © 2020 Federation of European Biochemical Societies.

Citation

Yi-Wen Cheng, Cheng-Yao Chen. A multifunctional DNA polymerase I involves in the maturation of Okazaki fragments during the lagging-strand DNA synthesis in Helicobacter pylori. The FEBS journal. 2021 Feb;288(3):884-901

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32484277

View Full Text