Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Stretching in the plasma membranes of cells and lipid membranes of vesicles plays important roles in various physiological and physicochemical phenomena. Irreversible electroporation (IRE) is a minimally invasive non-thermal tumor ablation technique where a series of short electrical energy pulses with high frequency is applied to destabilize the cell membranes. IRE also induces lateral tension due to stretching in the membranes of giant unilamellar vesicles (GUVs). Here, the kinetics of irreversible pore formation under constant electrical tension in GUVs has been investigated. The GUVs are prepared by a mixture of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine using the natural swelling method. An IRE signal of frequency 1.1 kHz is applied to the GUVs through a gold-coated electrode system. Stochastic pore formation is observed for several 'single GUVs' at a particular constant tension. The time course of the fraction of intact GUVs among all the examined GUVs is fitted with a single-exponential decay function from which the rate constant of pore formation in the vesicle, kp, is calculated. The value of kp increases with an increase of membrane tension. An increase in the proportion of negatively charged lipids in a membrane gives a higher kp. Theoretical equations are fitted to the tension-dependent kp and to the probability of pore formation, which allows us to obtain the line tension of the membranes. The decrease in the energy barrier for formation of the nano-size nascent or prepore state, due to the increase in electrical tension, is the main factor explaining the increase of kp.

Citation

Md Kabir Ahamed, Mohammad Abu Sayem Karal, Marzuk Ahmed, Shareef Ahammed. Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles. European biophysics journal : EBJ. 2020 Jul;49(5):371-381

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32494845

View Full Text