Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Cardiac fibroblast (CF) differentiation plays a crucial role in cardiac fibrosis, which is a specific manifestation distinguishing pathological cardiac hypertrophy from physiological hypertrophy. The DNA-binding activity of paired box 6 (Pax6) has been shown to be oppositely regulated in physiological and pathological hypertrophy; however, it remains unclear whether Pax6 is involved in CF differentiation during cardiac fibrosis. We found that Pax6 is expressed in the heart of and CFs isolated from adult mice. Moreover, angiotensin II (Ang II) induced the downregulation of Pax6 mRNA and protein expression in fibrotic heart tissue and cardiac myofibroblasts. Pax6 knockdown in CFs promoted the expression of the myofibroblast marker α-smooth muscle actin (α-SMA) and the synthesis of the extracellular matrix (ECM) proteins collagen I and fibronectin. Furthermore, we validated the ability of Pax6 to bind to the promoter regions of Cxcl10 and Il1r2 and the intronic region of Tgfb1. Pax6 knockdown in CFs decreased CXC chemokine 10 (CXCL10) and interleukin-1 receptor 2 (IL-1R2) expression and increased transforming growth factor β1 (TGFβ1) expression, mimicking the effects of Ang II. In conclusion, Pax6 exerts an inhibitory effect on CF differentiation and ECM synthesis by transcriptionally activating the expression of the anti-fibrotic factors CXCL10 and IL-1R2 and repressing the expression of the pro-fibrotic factor TGFβ1. Therefore, maintaining Pax6 expression in CFs is essential for preventing CF differentiation, and provides a new therapeutic target for cardiac fibrosis. Copyright © 2020 Elsevier Inc. All rights reserved.

Citation

Yenan Feng, Mingzhe Li, Shuaixing Wang, Wenwen Cong, Guomin Hu, Yao Song, Han Xiao, Erdan Dong, Youyi Zhang. Paired box 6 inhibits cardiac fibroblast differentiation. Biochemical and biophysical research communications. 2020 Jul 30;528(3):561-566

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32505347

View Full Text