Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Mutations in S-phase cyclin A-associated protein in the endoplasmic reticulum (SCAPER) cause a recessively inherited multisystemic disorder whose main features are retinal degeneration and intellectual disability. SCAPER, originally identified as a cell cycle regulator, was also suggested to be a ciliary protein. Because Scaper mutant males are sterile, we set up to characterize their phenotype. The testes of Scaper mutant mice are significantly smaller than those of WT mice. Histology revealed no signs of spermatogenesis, and seminiferous tubules contained mainly Sertoli cells with a few spermatogonia/spermatogonial stem cells (SSCs). In WT testes, SCAPER is expressed by SSCs and in the various stages of spermatogenesis, as well as in Sertoli cells. In WT spermatozoa SCAPER is not expressed in the flagellum but rather in the head compartment, where it is found both in the nucleus and in the perinuclear region. Scaper mutant females present reduced fertility, manifested by a significantly smaller litter size compared to WT females. Mutant ovaries are similar in size but comprised of significantly less primordial and antral follicles, compared to WT ovaries, while the number of atretic follicles is significantly higher. In WT ovarian follicles SCAPER is expressed in the somatic granulosa cells as well as in the oocyte. In conclusion, our data demonstrate that SCAPER is a crucial component in both male and female reproductive systems. We hypothesize that the reproductive phenotype observed in Scaper mutant mice is rooted in SCAPER's interaction with cyclin A/Cdk2, which play an important role, however different, in male and female gonads. © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Citation

Yasmin Tatour, Hadas Bar-Joseph, Ruth Shalgi, Tamar Ben-Yosef. Male sterility and reduced female fertility in SCAPER-deficient mice. Human molecular genetics. 2020 Aug 03;29(13):2240-2249

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32510560

View Full Text