Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Genomics influences the aging process in many different ways. This 10-part series of articles describes what is known about genetics and aging, including genes, adducts, and telomeres, decreased immune defenses, oxidation and inefficient mitochondria, toxins and radiation, glycosylation, caloric intake and sirtuin production, neurotransmitter imbalance, hormone mechanisms, reduced nitric oxide, and stem cell slowdown. This first article explores gene adducts as an epigenetic "sludge," the influence of telomeres and other mutations that contribute to DNA dysfunction, cell stress, and premature aging. Factors that contribute to adduct formation and reduced telomere length are presented along with some changes in behavior, environmental exposure, food/supplement use, weight, sleep, and exercise that have been found to reduce damage, potentially increasing longevity. Adherence to a Mediterranean diet that contains fruits and whole grains along with fiber, antioxidants (e.g., beta-carotene, vitamins C and E), omega-3 fatty acids, and soy protein may reduce DNA adducts and protect telomeres. So providers may want to recommend these simple but key clinical and individual changes to enhance DNA health, wellness, and longevity.


Kenneth Wysocki, Diane Seibert. Genomics of aging: Genes, adducts, and telomeres. Journal of the American Association of Nurse Practitioners. 2020 Jun;32(6):419-422

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32511191

View Full Text