Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The peridural membrane (PDM) is a well-defined structure between dura mater and the wall of the spinal canal. The spine may be viewed as a multi-segmented joint, with the epidural cavity and neural foramina as joint spaces and PDM as synovial lining. The objective of this investigation was to determine if PDM has histological characteristics of synovium. Samples of the PDM of the thoraco-lumbar spine were taken from 23 human cadavers and analyzed with conventional light microscopy and confocal microscopy. Results were compared to reports on similar analyses of synovium in the literature. Histological distribution of areolar, fibrous, and adipose connective tissue in PDM was similar to synovium. The PDM has an intima and sub-intima. No basement membrane was identified. CD68, a marker for macrophage-like-synoviocytes, and CD55, a marker for fibroblast-like synoviocytes, were seen in the lining and sub-lining of the PDM. Multifunctional hyaluronan receptor CD44 and hyaluronic acid synthetase 2 marker HAS2 were abundantly present throughout the membrane. Marked presence of CD44, CD55, and HAS2 in the well-developed tunica muscularis of blood vessels and in the body of the PDM suggests a role in the maintenance and lubrication of the epidural cavity and neural foramina. Presence of CD68, CD55, and CD44 suggests a scavenging function and a role in the inflammatory response to noxious stimuli. Thus, the human PDM has histological and immunohistochemical characteristics of synovium. This suggests that the PDM may be important for the homeostasis of the flexible spine and the neural structures it contains. © 2020 American Association for Anatomy.

Citation

Hemmo A Bosscher, Petar N Grozdanov, Irfan I Warraich, Clinton C MacDonald, Miles R Day. The peridural membrane of the spine has characteristics of synovium. Anatomical record (Hoboken, N.J. : 2007). 2021 Mar;304(3):631-646

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32537855

View Full Text