Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

While working is more comfortable in a supine position and healthier in a standing, most people work in a sitting. However, it is unclear whether there are differences in brain activity efficiency in different postures. Here, we, therefore, compared changes in brain activity across three different postures to determine the optimal posture for performing working memory tasks. Their effect on brain activity was examined using EEG signals together with the information of accuracy and reaction times during 2-back task in 24 subjects. Substantial differences in brain waves were observed at sitting and standing positions compared to the supine, especially in delta waves and frontal lobe, where is known to improve the modulation of brain activity efficiently. Brain efficiency was higher during standing and sitting than in a supine. These findings show that postural changes may affect the efficiency of brain activity during working memory tasks. Practitioner summary: Differences in brain efficiency between different postures during working memory tasks have not been explored. This study suggests that efficiency in several brain areas is higher during sitting and standing than in a supine position. This finding has important implications regarding workplace environments. Furthermore, this result would be useful to improve accomplishment and reduce negative effects of work posture. Abbreviations: EEG: electroencephalogram; PSQI: Pittsburgh sleep quality index; KSS: Karolinska sleepiness scale; FFT: fast fourier transform; ROI: region of interest; ANS: autonomic nervous system; Fp: prefrontal; AF: anterior frontal; frontal; Fz: midline frontal; temporal; central; Cz: midline central; P: parietal; Pz: midline parietal; O: occipital; Oz: midline occipital.

Citation

Ju-Yeon Jung, Hwi-Young Cho, Chang-Ki Kang. Brain activity during a working memory task in different postures: an EEG study. Ergonomics. 2020 Nov;63(11):1359-1370

Expand section icon Mesh Tags


PMID: 32552557

View Full Text