Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The aims of this study were to shed light on the role of G-protein-coupled membrane oestrogen receptor (GPER) and oestrogen-related receptor (ERR) in mouse testis function at the gene expression level, as well as the involvement of GPER and ERR in cellular and molecular processes. Male mice were injected (50µg kg-1,s.c.) with the GPER antagonist G-15, the ERRα inverse agonist XCT790 or the ERRβ/ERRγ agonist DY131. Next-generation sequencing (RNA-Seq) was used to evaluate gene expression. Bioinformatic analysis of read abundance revealed that 50, 86 and 171 transcripts were differentially expressed in the G-15-, XCT790- and DY131-treated groups respectively compared with the control group. Annotated genes and their protein products were categorised regarding their associated biological processes and molecular functions. In the XCT790-treated group, genes involved in immunological processes were upregulated. In the DY131-treated group, genes with increased expression were primarily engaged in protein modification (protein folding and small protein conjugation). In addition, the expression of genes recognised as oncogenes, such as BMI1 proto-oncogene, polycomb ring finger (Bmi1) and nucleophosphin 1 (Npm1), was significantly increased in all experimental groups. This study provides detailed information regarding the genetic changes in the testicular transcriptome of the mouse in response to modulation of non-canonical oestrogen receptor activity.

Citation

M Duliban, A Gurgul, T Szmatola, P Pawlicki, A Milon, Z J Arent, P Grzmil, M Kotula-Balak, B Bilinska. Mouse testicular transcriptome after modulation of non-canonical oestrogen receptor activity. Reproduction, fertility, and development. 2020 Jun;32(10):903-913

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32586420

View Full Text