Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Protein tyrosine phosphatase receptor type D (PTPRD) is a tumor suppressor gene that is epigenetically silenced and mutated in several cancers, including breast cancer. Since IL-6/STAT3 signaling is often hyperactivated in breast cancer and STAT3 is a direct PTPRD substrate, we investigated the role of PTPRD in breast cancer and the association between PTPRD and IL-6/STAT3 signaling. We found that PTPRD acts as a tumor suppressor in breast cancer tissues and that high PTPRD expression is positively associated with tumor size, lymph node metastasis, PCNA expression, and patient survival. Moreover, breast cancers with high PTPRD expression tend to exhibit high IL-6 and low phosphorylated-STAT3 expression. IL-6 was found to inhibit miR-34a transcription and induce PTPRD expression in breast cancer and breast epithelial cells, whereas PTPRD was shown to mediate activated STAT3 dephosphorylation and to be a conserved, direct target of miR-34a. IL-6-induced PTPRD upregulation was blocked by miR-34a mimics, whereas experimental PTPRD overexpression suppressed MDA-MB-231 cell migration, invasion, and epithelial to mesenchymal transition, decreased STAT3 phosphorylation, and increased miR-34a transcription. Our findings suggest that PTPRD mediates activated STAT3 dephosphorylation and is induced by the IL-6/STAT3-mediated transcriptional inhibition of miR-34a, thereby establishing a negative feedback loop that inhibits IL-6/STAT3 signaling overactivation.

Citation

Fan Zhang, Bo Wang, Tao Qin, Lu Wang, Qingqing Zhang, Ying Lu, Bo Song, Xiaotang Yu, Lianhong Li. IL-6 induces tumor suppressor protein tyrosine phosphatase receptor type D by inhibiting miR-34a to prevent IL-6 signaling overactivation. Molecular and cellular biochemistry. 2020 Oct;473(1-2):1-13

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32602014

View Full Text