Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The N-BAR domain of the human Bin1 protein is indispensable for T-tubule biogenesis in skeletal muscles. It binds to lipid mono- and bilayers that mimic the sarcolemma membrane composition, and it transforms vesicles into uniform tubules by generating a decorating protein scaffold. We found that Δ(1-33)BAR, lacking the N-terminal amphipathic helix (H0), and H0 alone bind to sarcolemma monolayers, although both proteins are not able to tubulate sarcolemma vesicles. By variation of the lipid composition, we elucidated the role of PI(4,5)P2, cholesterol, and an asymmetric sarcolemma composition for Bin1-N-BAR binding and sarcolemma tubulation. Our results indicate that Bin1-N-BAR binding is low in the absence of PI(4,5)P2 and it is affected by additional changes in the negative headgroup charge and lipid acyl chain composition. However, it is not dependent on the cholesterol content. The results from Langmuir monolayer experiments are complementary to lipid bilayer studies using electron microscopy that provides information on membrane curvature generation.

Citation

Andrea Auerswald, Tobias Gruber, Jochen Balbach, Annette Meister. Lipid-Dependent Interaction of Human N-BAR Domain Proteins with Sarcolemma Mono- and Bilayers. Langmuir : the ACS journal of surfaces and colloids. 2020 Aug 04;36(30):8695-8704

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32649209

View Full Text