Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Pseudomonas aeruginosa is a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal β-lactam-β-lactamase inhibitor (BLI) combinations ceftolozane-tazobactam and ceftazidime-avibactam. Here, we compare the enzymatic activity of wild-type (WT) AmpC from PAO1 to those of four of these reported AmpC mutants, bearing mutations E247K (a change of E to K at position 247), G183D, T96I, and ΔG229-E247 (a deletion from position 229 to 247), to gain detailed insights into how these mutations allow the circumvention of these clinically vital antibiotic-inhibitor combinations. We found that these mutations exert a 2-fold effect on the catalytic cycle of AmpC. First, they reduce the stability of the enzyme, thereby increasing its flexibility. This appears to increase the rate of deacylation of the enzyme-bound β-lactam, resulting in greater catalytic efficiencies toward ceftolozane and ceftazidime. Second, these mutations reduce the affinity of avibactam for AmpC by increasing the apparent activation barrier of the enzyme acylation step. This does not influence the catalytic turnover of ceftolozane and ceftazidime significantly, as deacylation is the rate-limiting step for the breakdown of these antibiotic substrates. It is remarkable that these mutations enhance the catalytic efficiency of AmpC toward ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. Knowledge gained from the molecular analysis of these and other AmpC resistance mutants will, we believe, aid in the design of β-lactams and BLIs with reduced susceptibility to mutational resistance. Copyright © 2020 American Society for Microbiology.

Citation

Cole L Slater, Judith Winogrodzki, Pablo A Fraile-Ribot, Antonio Oliver, Mazdak Khajehpour, Brian L Mark. Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam. Antimicrobial agents and chemotherapy. 2020 Aug 20;64(9)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32660987

View Full Text