Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Fluconazole-resistant Candida albicans is a big scary reality. The authors assessed the antifungal effects of magnetic iron-oxide nanoparticles on fluconazole-resistant colonising isolate of C. albicans and determined the expression of ERG11 gene, protein sequence similarity and ergosterol content. C. albicans isolates were characterised and fluconazole resistance is recognised using World Health Organization's WHONET software. Susceptibility testing of magnetic iron-oxide nanoparticles against fluconazole-resistant colonising isolate of C. albicans was performed according to Clinical and Laboratory Standards Institute guidelines. The expression patterns of ERG11 and protein sequence similarity were investigated. Ergosterol quantification has been used to gauge the antifungal activity of magnetic iron-oxide nanoparticles. The findings indicated that 93% of C. albicans isolates were resistant to fluconazole. Magnetic iron-oxide nanoparticles were presented activity against fluconazole-resistant colonising isolate of C. albicans with minimum inhibitory concentration at 250-500 µg/ml. The expression level of ERG11 gene was downregulated in fluconazole-resistant colonising isolate of C. albicans. The results revealed no differences in fluconazole-resistant colonising isolate of C. albicans by comparison with ERG11 reference sequences. Moreover, significant reduction was noted in ergosterol content. The findings shed a novel light on the application of magnetic iron-oxide nanoparticles in fighting against resistant C. albicans.

Citation

Mohammad Zare-Khafri, Fahimeh Alizadeh, Sadegh Nouripour-Sisakht, Alireza Khodavandi, Majid Gerami. Inhibitory effect of magnetic iron-oxide nanoparticles on the pattern of expression of lanosterol 14α-demethylase (ERG11) in fluconazole-resistant colonising isolate of Candida albicans. IET nanobiotechnology. 2020 Jul;14(5):375-381

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32691739

View Full Text