Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

This study reports the use of ITC in understanding the thermodynamics occurring for a controlled release system in which complexation has been exploited. In this study, a model drug, propranolol hydrochloride (PPN) was complexed with magnesium aluminium silicate (MAS) and these complexes were used in combination with polyethylene oxide (PEO) as a hydrophilic carrier at various concentrations to sustain the release of PPN. DSC, XRPD, ATR-FTIR and SEM/EDX were successfully used in characterising the produced complexes. 2D- SAXS data patterns for MAS and the produced complexes were shown to be symmetric and circular with the particles showing no preferred orientation at the nanometre scale. ITC studies showed differences between PPN adsorption onto MAS compared with PPN adsorption onto a MAS-PEO mixture. At both temperatures studied the binding affinity Ka was greater for the titration of PPN into the MAS-PEO mixture (5.37E + 04 ± 7.54E + 03 M at 25 °C and 8.63E + 04 ± 6.11E + 03 M at 37 °C), compared to the affinity obtained upon binding between PPN and MAS as previously reported suggesting a stronger binding with implications for the dissolution process. MAS-PPN complexes with the PEO polymer compacts displayed desired manufacturing and formulation properties for a formulator including, reduced plastic recovery therefore potentially reducing the risk of cracking/splitting and on tooling wear, controlled release of PPN at a significantly low (5%) polymer level as well as a zero-order release profile (case II transport) using up to 50% polymer level. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

A M Totea, I Dorin, P R Laity, Juan Sabin, B R Conway, L Waters, K Asare-Addo. A molecular understanding of magnesium aluminium silicate - drug, drug - polymer, magnesium aluminium silicate - polymer nanocomposite complex interactions in modulating drug release: Towards zero order release. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2020 Sep;154:270-282

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32717386

View Full Text