Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

To evaluate the efficiency of 2- and 3-class classification predictive tasks constructed from radiomics features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) pharmacokinetic (PK) protocol in discriminating among benign, borderline, and malignant ovarian tumors. One hundred and four ovarian lesions were evaluated using preoperative DCE-MRI. Radiomics features were extracted from 7 types of DCE-MR images. To explore the differential ability of radiomics between three types of ovarian tumors, two- and three-class classification tasks were established. The 2-class classification task was divided into three subtasks: benign vs. borderline (task A), benign vs. malignant (task B), and borderline vs. malignant (task C). For the 3-class classification task, 104 lesions were randomly divided into training (72 lesions) and validation (32 lesions) cohorts. The discrimination abilities of the radiomics signatures were established with the training cohort and tested with the independent validation cohort. The predictive performance of the task was evaluated by receiver operating characteristic (ROC) curve, calibration curve analysis, and decision curve analysis (DCA). For the 2-class classification task, the combination of PK radiomics signatures model (PK model) showed a good diagnostic ability with the highest area under the ROC curves (AUCs) of 0.899, 0.865, and 0.893 for tasks A, B, and C, respectively. Additionally, the 3-class classification task demonstrated a good discrimination performance with AUCs of 0.893, 0.944, and 0.891 for the benign, borderline, and malignant groups, respectively. Radiomics analysis based on the DCE-MRI PK protocol showed promise for discriminating among benign, borderline, and malignant ovarian tumors. • Two-class classification predictive task of DCE-MRI PK protocol enabled the classification of 3 categories of ovarian tumors through the pairwise comparison strategy with a perfect diagnostic ability. • Three-class classification predictive task maintained good performance to effectively judge each category of ovarian tumors directly.


Xiao-Li Song, Jia-Liang Ren, Dan Zhao, Lifang Wang, Honghong Ren, Jinliang Niu. Radiomics derived from dynamic contrast-enhanced MRI pharmacokinetic protocol features: the value of precision diagnosis ovarian neoplasms. European radiology. 2021 Jan;31(1):368-378

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32767049

View Full Text