Correlation Engine 2.0
Clear Search sequence regions


  • adducts (3)
  • dna adducts (10)
  • dna repair (3)
  • herbal (1)
  • humans (1)
  • liver (1)
  • mass (1)
  • periods (1)
  • rats (1)
  • Sizes of these terms reflect their relevance to your search.

    The formation and repair of N2-(trans-isosafrol-3'-yl)-2'-deoxyguanosine (S-3'-N2-dG) DNA adduct derived from the spice and herbal alkenylbenzene constituent safrole were investigated. DNA adduct formation and repair were studied in vitro and using molecular dynamics (MD) simulations. DNA adduct formation was quantified using liquid chromatography-mass spectrometry (LCMS) in wild type and NER (nucleotide excision repair) deficient CHO cells and also in HepaRG cells and primary rat hepatocytes after different periods of repair following exposure to safrole or 1'-hydroxysafrole (1'-OH safrole). The slower repair of the DNA adducts found in NER deficient cells compared to that in CHO wild type cells indicates a role for NER in repair of S-3'-N2-dG DNA adducts. However, DNA repair in liver cell models appeared to be limited, with over 90% of the adducts remaining even after 24 or 48 h recovery. In our further studies, MD simulations indicated that S-3'-N2-dG adduct formation causes only subtle changes in the DNA structure, potentially explaining inefficient activation of NER. Inefficiency of NER mediated repair of S-3'-N2-dG adducts points at persistence and potential bioaccumulation of safrole DNA adducts upon daily dietary exposure.

    Citation

    Shuo Yang, Jakob D H Liu, Matthias Diem, Sebastiaan Wesseling, Jacques Vervoort, Chris Oostenbrink, Ivonne M C M Rietjens. Molecular Dynamics and In Vitro Quantification of Safrole DNA Adducts Reveal DNA Adduct Persistence Due to Limited DNA Distortion Resulting in Inefficient Repair. Chemical research in toxicology. 2020 Sep 21;33(9):2298-2309

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32786539

    View Full Text