Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Understanding and modulating proton-mediated biochemical processes in living organisms have been impeded by the lack of tools to control local pH. Here, we design nanotransducers capable of converting noninvasive alternating magnetic fields (AMFs) into protons in physiological environments by combining magnetic nanoparticles (MNPs) with polymeric scaffolds. When exposed to AMFs, the heat dissipated by MNPs triggered a hydrolytic degradation of surrounding polyanhydride or polyester, releasing protons into the extracellular space. pH changes induced by these nanotransducers can be tuned by changing the polymer chemistry or AMF stimulation parameters. Remote magnetic control of local protons was shown to trigger acid-sensing ion channels and to evoke intracellular calcium influx in neurons. By offering a wireless modulation of local pH, our approach can accelerate the mechanistic investigation of the role of protons in biochemical signaling in the nervous system.

Citation

Jimin Park, Anthony Tabet, Junsang Moon, Po-Han Chiang, Florian Koehler, Atharva Sahasrabudhe, Polina Anikeeva. Remotely Controlled Proton Generation for Neuromodulation. Nano letters. 2020 Sep 09;20(9):6535-6541

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32786937

View Full Text