Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The proton electrochemical gradient generated by respiratory chain activity accounts for over 90% of all available ATP and, as such, its evaluation and accurate measurements regarding its total values and fluctuations is an invaluable component in the understanding of mitochondrial functions. Consequently, alterations in electric potential across the inner mitochondrial membrane generated by differential protonic accumulations and transport are known as the mitochondrial membrane potential, or Δψ, and are reflective of the functional metabolic status of mitochondria. There are several experimental approaches to measure Δψ, ranging from fluorometric evaluations to electrochemical probes. Here we discuss the advantages and disadvantages of several of these methods, ranging from one that is dependent on the movement of a particular ion (tetraphenylphosphonium (TPP+) with a selective electrode) to the selection of a fluorescent dye from various types to achieve the same goal. The evaluation of the accumulation and movements of TPP+ across the inner mitochondrial membrane, or the fluorescence of accumulated dye particles, is a sensitive and accurate method of evaluating the Δψ in respiring mitochondria (either isolated or still inside the cell).

Citation

João S Teodoro, Ivo F Machado, Ana C Castela, Anabela P Rolo, Carlos M Palmeira. The Evaluation of Mitochondrial Membrane Potential Using Fluorescent Dyes or a Membrane-Permeable Cation (TPP+) Electrode in Isolated Mitochondria and Intact Cells. Methods in molecular biology (Clifton, N.J.). 2020;2184:197-213

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32808227

View Full Text