Correlation Engine 2.0
Clear Search sequence regions


  • calcium (2)
  • quartz sio2 (1)
  • research (1)
  • sand (14)
  • silicon (2)
  • Sizes of these terms reflect their relevance to your search.

    The content of fine sand (< 200 μm) in primary sludge is relatively high in Chongqing sewage treatment plant owing to the part of rainwater will be mixed with sand and discharged into the municipal pipe network. Due to the insufficient separation of the sand, different obstacles to subsequent treatment processes may increase equipment wear, reduce effective volume of the tank, or shorten the cleaning cycle. There is a common use of grit chamber for the separation. Nevertheless, the use of hydrocyclone shows an outstanding performance in cost effectiveness and ease operation. The primary sludge in a sewage plant in Chongqing was monitored, and the average concentration of total suspend solids (TSS), total sand content, and volatile suspended solid (VSS) were 40.25 g/L, 17.51 g/L, and 13.41 g/L, respectively. The size of sand in the sludge was small, and the sand below 30 μm accounted for about 70% of the total sand. It formed flocs with organic matter and was removed in subsequent process units. While the size between 30-200 μm, called fine sand, was the main separation object, accounted for about 28.5%. According to XRF and XRD analysis, the sludge composition was mainly composed of quartz (SiO2), plagioclase (Na(AlSi3O8)), and calcite (CaCO3), which were similar to the main mineral composition of surface sediments and mountain rocks in the main urban area of Chongqing. A single-factor experiment on two types (FX100 and FX50) of hydrocylones was conducted to determine their abilities concerning the separation of fine sand and enrichment of organic matters from primary sludge. FX100 and FX50 showed best performance in the case of P = 0.17 Mpa, underflow diameter (Du) = 18 mm and P = 0.20 Mpa, Du = 6 mm, respectively. The removal efficiency of fine sand by hydrocyclone FX50 was 71.39%. While, it had poor performance on organic matter enrichment and the removal efficiency of which was 17.38%. By contrast, the removal rate by FX100 reached 61.89% for fine sand and only 6.89% for organic matters detached. The superimposition effect did not appear in the serial experiments on hydrocylone FX100 and FX50, but the power is 3.5 times of that of single-stage hydrocylone FX100. Comprehensive consideration of the processing capacity per unit time and operating power, the hydrocylone FX100 was more suitable for actual operation.

    Citation

    Xiaohua Huang, Yingying Lu, Guobo Wu, Zhiping Liu. Research on the experiment of the enhancement removal of fine sand by hydrocyclone in sewage treatment plant. Environmental science and pollution research international. 2021 Jan;28(1):337-353

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32812160

    View Full Text