Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Hypoxic-ischemic brain damage (HIBD) is a frequent cause of mortality and neurological handicaps in infants and children worldwide. To understand better the pathogenesis and management of HIBD, we established a HIBD model by common carotid artery ligation followed by systemic hypoxia in neonatal rats, and in other studies induced neuronal death in rat pheochromocytoma (PC12) cells by 12 h of oxygen-glucose deprivation (OGD). The level of KPNA3 declined in rats following experimental HIBD and in PC12 cells following OGD. KPNA3 overexpression protected neonatal rats against HIBD and PC12 cells against OGD-induced cell death. KPNA3 demonstrated to be the target of miR-134-5p could be activated by the transcriptional factor CCAAT/enhancer binding protein alpha (C/EBPα). The expression of miR-134-5p and C/EBPα was elevated in rats following experimental HIBD and in PC12 cells following OGD. In the parallel experiments, C/EBPα knockdown and miR-134 inhibition protected against HIBD pathology in neonatal rats and against OGD-induced neuronal death in PC12 cells. These findings reveal that the C/EBPα/miR-134-5p/KPNA3 axis mediates hypoxic-ischemic brain damage and neuronal death, thus presenting a potential therapeutic target for the treatment of human newborns at risk for HIBD. Copyright © 2020 Elsevier Inc. All rights reserved.

Citation

Wei-Bing Chen, Lian-Xiu Zhang, Yi-Kun Zhao, Jie Li, Yan Jiao. C/EBPα-mediated transcriptional activation of miR-134-5p entails KPNA3 inhibition and modulates focal hypoxic-ischemic brain damage in neonatal rats. Brain research bulletin. 2020 Nov;164:350-360

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32814091

View Full Text