Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The proper detection and behavioral response to painfully cold temperatures is critical for avoiding potentially harmful tissue damage. Cold allodynia and hyperalgesia, pain associated with innocuous cooling and exaggerated pain with noxious cold, respectively, are common in patients with chronic pain. In peripheral somatosensory afferents, the ion channels transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) are candidate receptors for innocuous and noxious cold temperatures, respectively. However, the role of TRPA1 as a cold sensor has remained controversial, and recent evidence suggests that TRPM8 channels and afferents mediate the detection of both pleasant and painful cold. To determine the role of TRPA1 afferents in cold-induced mouse behaviors in vivo, we used functional phenotyping by targeted nerve conduction block with the cell-impermeant lidocaine derivative QX-314. Surprisingly, we find that injection of QX-314 with TRPA1 agonists reduces cold-induced behaviors in mice, but does so in a TRPM8-dependent manner. Moreover, this effect is sexually dimorphic and requires the glial cell line-derived neurotrophic factor receptor GFRα3, as does cold hypersensitivity produced by the activation of TRPA1 channels. Taken together, these results suggest that under conditions of neurogenic inflammation, TRPA1 works upstream of GFRα3 and TRPM8 to produce cold hypersensitivity, providing novel insights into the role of TRPA1 channels in cold pain. Copyright © 2020 International Association for the Study of Pain.

Citation

Shanni Yamaki, Amanda Chau, Luigi Gonzales, David D McKemy. Nociceptive afferent phenotyping reveals that transient receptor potential ankyrin 1 promotes cold pain through neurogenic inflammation upstream of the neurotrophic factor receptor GFRα3 and the menthol receptor transient receptor potential melastatin 8. Pain. 2021 Feb 01;162(2):609-618

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32826761

View Full Text