Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The ventromedial nucleus of the hypothalamus (VMN) is involved in the counterregulatory response to hypoglycemia. VMN neurons activated by hypoglycemia (glucose-inhibited [GI] neurons) have been assumed to play a critical although untested role in this response. Here, we show that expression of a dominant negative form of AMPK or inactivation of AMPK α1 and α2 subunit genes in Sf1 neurons of the VMN selectively suppressed GI neuron activity. We found that Txn2, encoding a mitochondrial redox enzyme, was strongly downregulated in the absence of AMPK activity and that reexpression of Txn2 in Sf1 neurons restored GI neuron activity. In cell lines, Txn2 was required to limit glucopenia-induced reactive oxygen species production. In physiological studies, absence of GI neuron activity after AMPK suppression in the VMN had no impact on the counterregulatory hormone response to hypoglycemia or on feeding. Thus, AMPK is required for GI neuron activity by controlling the expression of the antioxidant enzyme Txn2. However, the glucose-sensing capacity of VMN GI neurons is not required for the normal counterregulatory response to hypoglycemia. Instead, it may represent a fail-safe system in case of impaired hypoglycemia sensing by peripherally located glucose detection systems that are connected to the VMN. © 2020 by the American Diabetes Association.

Citation

Simon Quenneville, Gwenaël Labouèbe, Davide Basco, Salima Metref, Benoit Viollet, Marc Foretz, Bernard Thorens. Hypoglycemia-Sensing Neurons of the Ventromedial Hypothalamus Require AMPK-Induced Txn2 Expression but Are Dispensable for Physiological Counterregulation. Diabetes. 2020 Nov;69(11):2253-2266

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32839348

View Full Text