Correlation Engine 2.0
Clear Search sequence regions


  • 2 mercaptoethanol (1)
  • acid (7)
  • acn (1)
  • amines (9)
  • amino acids (1)
  • argon (4)
  • behavior (1)
  • belgium (4)
  • cad cam (8)
  • case (1)
  • cell growth (1)
  • collagen type i (2)
  • collagen type i (1)
  • cross- present (1)
  • deuterium oxide (1)
  • dialysis (3)
  • direct (2)
  • dithiothreitol (4)
  • endo (2)
  • ester (5)
  • et 10 (1)
  • ethanol (1)
  • ethylenediaminetetraacetic acid (3)
  • factors (1)
  • fibroblasts (2)
  • fitc- dextran (1)
  • formic acid (1)
  • gelatin (15)
  • gold (1)
  • gram (3)
  • humans (3)
  • hydrogel (42)
  • hydrogen (1)
  • ion (1)
  • layer (7)
  • mass (6)
  • metals (1)
  • mold (1)
  • molecular weight (8)
  • n- hydroxysuccinimide (3)
  • native (1)
  • ortho- phthalic dialdehyde (5)
  • oxygen (5)
  • pbm (2)
  • peptides (1)
  • phosphate (2)
  • polymer (4)
  • potassium (1)
  • protein human (1)
  • protocol (7)
  • protons (2)
  • pulses rate (1)
  • relief (1)
  • research (1)
  • RGD (2)
  • serum (1)
  • sodium (1)
  • sodium phosphate (1)
  • solutions (5)
  • stem cell (2)
  • student (1)
  • sweden (1)
  • thiol (11)
  • uv- light (3)
  • Val (1)
  • weight (4)
  • yeast (2)
  • Sizes of these terms reflect their relevance to your search.

    Various biopolymers, including gelatin, have already been applied to serve a plethora of tissue engineering purposes. However, substantial concerns have arisen related to the safety and the reproducibility of these materials due to their animal origin and the risk associated with pathogen transmission as well as batch-to-batch variations. Therefore, researchers have been focusing their attention toward recombinant materials that can be produced in a laboratory with full reproducibility and can be designed according to specific needs (e.g., by introducing additional RGD sequences). In the present study, a recombinant protein based on collagen type I (RCPhC1) was functionalized with photo-cross-linkable methacrylamide (RCPhC1-MA), norbornene (RCPhC1-NB), or thiol (RCPhC1-SH) functionalities to enable high-resolution 3D printing via two-photon polymerization (2PP). The results indicated a clear difference in 2PP processing capabilities between the chain-growth-polymerized RCPhC1-MA and the step-growth-polymerized RCPhC1-NB/SH. More specifically, reduced swelling-related deformations resulting in a superior CAD-CAM mimicry were obtained for the RCPhC1-NB/SH hydrogels. In addition, RCPhC1-NB/SH allowed the processing of the material in the presence of adipose tissue–derived stem cells that survived the encapsulation process and also were able to proliferate when embedded in the printed structures. As a consequence, it is the first time that successful HD bioprinting with cell encapsulation is reported for recombinant hydrogel bioinks. Therefore, these results can be a stepping stone toward various tissue engineering applications.

    Citation

    Liesbeth Tytgat, Agnes Dobos, Marica Markovic, Lana Van Damme, Jasper Van Hoorick, Fabrice Bray, Hugo Thienpont, Heidi Ottevaere, Peter Dubruel, Aleksandr Ovsianikov, Sandra Van Vlierberghe. High-Resolution 3D Bioprinting of Photo-Cross-linkable Recombinant Collagen to Serve Tissue Engineering Applications Biomacromolecules. 2020 Aug 25;21(10):3997-4007


    PMID: 32841006

    View Full Text