Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Circadian rhythm is the most important and universal biological rhythm in marine organisms. In this research, the movement behaviour of abalone (Haliotis discus hannai) was continuously monitored under a light cycle of 12 L:12D. It was found that the cumulative movement distance and cumulative movement time of abalone reached was highest from 00:00-03:00 h. The minimum values of maximum movement velocity occurred between 21:00-00:00 h, and a significant circadian cosine rhythm was exhibited during these periods (P < 0.05). Metabolomic analysis of cerebral ganglions of abalone was conducted at 06:00 h (6 M), 14:00 h (14 M), and 22:00 h (22 M) and 380, 385, and 315 metabolites with significant differences were identified in 6 M vs 14 M, 14 M vs 22 M, and 6 M vs 22 M, respectively (P < 0.05). With the alternation of day and night, the expression levels of phosphatidylcholine, 5-HT, N-acetyl-5-hydroxytryptamine, indole-3-acetaldehyde, hypoxanthine, and deoxyinosine declined significantly, while those of Lysophosphatidylcholines (lysoPC) (20: 5 (5Z, 8Z, 11Z, 14Z, 17Z)), lysoPC (22: 4 (7Z, 10Z, 13Z, 16Z)), lysoPC (16: 1 (9Z) / 0: 0), phosphatidylethanolamine (PE) (18: 1 (11Z) 22: 2 (13Z, 16Z)), and guanosine 5'-phosphate rose significantly. These 11 metabolites can be used as differential metabolic markers. These findings not only quantitatively describe the circadian movement behaviours of abalone, but also provide an initial analysis of the circadian mechanism of the physiological metabolic conversion of abalone, which in turn provides guidelines for light control and feeding strategy for use in aquaculture production. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

Xiaolong Gao, Xuan Luo, Weiwei You, Caihuan Ke. Circadian movement behaviours and metabolism differences of the Pacific abalone Haliotis discus hannai. Journal of photochemistry and photobiology. B, Biology. 2020 Oct;211:111994

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32858337

View Full Text