Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

During orthodontic treatment with fixed appliances, demineralization around brackets often occurs. The aim of this in vitro study was to investigate the effect of the caries-protective self-assembling peptide P11‑4 (SAP P11-4) on the shear bond strength of metal brackets. In all, 45 extracted human wisdom teeth were available for the study. The teeth were randomly divided into 3 groups (each n = 15) and pretreated as follows: test group 1: application of SAP P11‑4 (Curodont Repair, Windisch, Switzerland) and storage for 24 h in artificial saliva; test group 2: application of SAP P11‑4; control group: no pretreatment with SAP P11‑4. A conventional metal maxillary incisor bracket (Discovery, Dentaurum, Ispringen) was adhesively bonded to each buccal surface. The shear bond strength was tested according to DIN 13990. After shearing, the Adhesive Remnant Index (ARI) was determined microscopically (10 × magnification). Analysis of variance (ANOVA) was used to check the groups for significant differences (α = 0.05). The distribution of the ARI scores was determined with the χ 2 test. There was no significant difference in shear forces between the groups (p = 0.121): test group 1 = 17.0 ± 4.51 MPa, test group 2 = 14.01 ± 2.51 MPa, control group 15.54 ± 4.34 MPa. The distribution of the ARI scores between the groups did not vary (p-values = 0.052-0.819). The application of the caries protective SAP P11‑4 before bonding of brackets did not affect the shear bond strength. Therefore, pretreatment of the enamel surface with SAP P11‑4 shortly before bracket insertion can be considered. © 2020. The Author(s).

Citation

Thomas Knaup, Heike Korbmacher-Steiner, Anahita Jablonski-Momeni. Effect of the caries-protective self-assembling peptide P11-4 on shear bond strength of metal brackets. Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie. 2021 Sep;82(5):329-336

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32876755

View Full Text