Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

It has long been suggested that a Na+-dependent carrier-mediated transport system is involved in the absorption of nucleobases and analogs, including some drugs currently in therapeutic use, for their uptake at the brush border membrane of epithelial cells in the small intestine, mainly based on studies in non-primate experimental animals. The presence of this transport system was indeed proved by the recent identification of sodium-dependent nucleobase transporter 1 (SNBT1/Slc23a4) as its molecular entity in rats. However, this transporter has been found to be genetically deficient in humans and higher primates. Aware of this deficiency, we need to revisit the issue of the absorption of these compounds in the human small intestine so that we can understand the mechanisms and gain information to assure the more rational use and development of drugs analogous to nucleobases. Here, we review the current understanding of the intestinal absorption of nucleobases and analogs. This includes recent knowledge about the efflux transport of those compounds across the basolateral membrane when exiting epithelial cells, following brush border uptake, in order to complete the overall absorption process; the facilitative transporters of equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) may be involved in that in many animal species, including human and rat, without any major species differences.

Citation

Hiroaki Yuasa, Tomoya Yasujima, Katsuhisa Inoue. Current Understanding of the Intestinal Absorption of Nucleobases and Analogs. Biological & pharmaceutical bulletin. 2020;43(9):1293-1300

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32879202

View Full Text