Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In this study, we describe the biological function of the phage-encoded protein RNA polymerase alpha subunit cleavage protein (Rac), a predicted Gcn5-related acetyltransferase encoded by phiKMV-like viruses. These phages encode a single-subunit RNA polymerase for transcription of their late (structure- and lysis-associated) genes, whereas the bacterial RNA polymerase is used at the earlier stages of infection. Rac mediates the inactivation of bacterial transcription by introducing a specific cleavage in the α subunit of the bacterial RNA polymerase. This cleavage occurs within the flexible linker sequence and disconnects the C-terminal domain, required for transcription initiation from most highly active cellular promoters. To achieve this, Rac likely taps into a novel post-translational modification (PTM) mechanism within the host Pseudomonas aeruginosa. From an evolutionary perspective, this novel phage-encoded regulation mechanism confirms the importance of PTMs in the prokaryotic metabolism and represents a new way by which phages can hijack the bacterial host metabolism.

Citation

Pieter-Jan Ceyssens, Jeroen De Smet, Jeroen Wagemans, Natalia Akulenko, Evgeny Klimuk, Subray Hedge, Marleen Voet, Hanne Hendrix, Jan Paeshuyse, Bart Landuyt, Hua Xu, John Blanchard, Konstantin Severinov, Rob Lavigne. The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit. Viruses. 2020 Sep 02;12(9)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32887488

View Full Text