Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Background: We previously reported that the adipokine chemerin, when added exogenously to the isolated rat mesenteric artery, amplified electrical field-stimulated (EFS) contraction. The Chemerin1 antagonist CCX832 alone inhibited EFS-induced contraction in tissues with but not without perivascular adipose tissue (PVAT). These data suggested indirectly that chemerin itself, presumably from the PVAT, facilitated EFS-induced contraction. We created the chemerin KO rat and now test the focused hypothesis that endogenous chemerin amplifies EFS-induced arterial contraction. Methods: The superior mesenteric artery +PVAT from global chemerin WT and KO female rats, with endothelium and sympathetic nerve intact, were mounted into isolated tissue baths for isometric and EFS-induced contraction. Results: CCX832 reduced EFS (2-20 Hz)-induced contraction in tissues from the WT but not KO rats. Consistent with this finding, the magnitude of EFS-induced contraction was lower in the tissues from the KO vs. WT rats, yet the maximum response to the adrenergic stimulus PE was not different among all tissues. Conclusion: These studies support that endogenous chemerin modifies sympathetic nerve-mediated contraction through Chemerin1, an important finding relative in understanding chemerin's role in control of blood pressure.

Citation

Emma D Flood, Stephanie W Watts. Endogenous Chemerin from PVAT Amplifies Electrical Field-Stimulated Arterial Contraction: Use of the Chemerin Knockout Rat. International journal of molecular sciences. 2020 Sep 02;21(17)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32887510

View Full Text