Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

This study aimed to evaluate if laryngopharyngeal reflux (LPR) plays a role as a risk factor for vocal fold polyps (VFPs), and if pepsin is associated with higher oxidative DNA damage of VFPs in the presence of LPR. Thirty patients with VFPs were recruited between 2017 and 2018. Prior to surgery, a laryngoscopy was performed on all subjects to evaluate VFPs. Polyp tissue and saliva samples were obtained scrupulously. Hematoxylin-eosin staining was performed for pathologic analysis. Immunohistochemistry and ELISA were used to detect pepsin in tissue and saliva of VFP patients. 8-OHdG and p-H2AX expression was detected to measure oxidative DNA damage in tissue. DNA damage was investigated in human immortalized laryngeal epithelial cells exposed to pepsin. The pepsin concentration in saliva was significantly higher (t = 2.38, P = .024) in the pepsin positive group. There was no significant difference in pepsin expression at different sites and pathological subtypes of VFPs. The levels of 8-OHdG and p-H2AX were significantly higher in the pepsin positive group and positively correlated with the tissue expression of pepsin. The concentration of pepsin in saliva also showed a significant correlation with 8-OHdG levels. Expression of 8-OHdG and p-H2AX, and tail moment of the comet assay were elevated in human immortalized laryngeal epithelial cells following treatment with pepsin. Patients with VFPs have higher levels of oxidative DNA damage in the presence of pepsin reflux. Pepsin may induce DNA damage in laryngeal epithelial cells and participate in the pathogenesis of VFPs. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Yuan-Feng Dai, Jia-Jie Tan, Chao-Qun Deng, Xiong Liu, Ze-Hong Lv, Xiang-Ping Li. Association of pepsin and DNA damage in laryngopharyngeal reflux-related vocal fold polyps. American journal of otolaryngology. 2020 Nov - Dec;41(6):102681

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32889371

View Full Text