Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Lysophosphatidic acid (LPA) via transactivation dependent signalling pathways contributes to a plethora of physiological and pathophysiological responses. In the vasculature, hyperelongation of glycosaminoglycan (GAG) chains on proteoglycans leads to lipid retention in the intima resulting in the early pathogenesis of atherosclerosis. Therefore, we investigated and defined the contribution of transactivation dependent signalling in LPA mediated GAG chain hyperelongation in human vascular smooth muscle cells (VSMCs). LPA acting via the LPA receptor 5 (LPAR5) transactivates the TGFBR1 to stimulate the mRNA expression of GAG initiation and elongation genes xylosyltransferase-1 (XYLT1) and chondroitin 6-sulfotransferase-1 (CHST3), respectively. We found that LPA stimulates ROS and Akt signalling in VSMCs, however they are not associated in LPAR5 transactivation of the TGFBR1. We observed that LPA via ROCK dependent pathways transactivates the TGFBR1 to stimulate genes associated with GAG chain elongation. We demonstrate that GPCR transactivation of the TGFBR1 occurs via a universal biochemical mechanism and the identified effectors represent potential therapeutic targets to inhibit pathophysiological effects of GPCR transactivation of the TGFBR1. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

Ying Zhou, Peter J Little, Yingnan Cao, Hang T Ta, Danielle Kamato. Lysophosphatidic acid receptor 5 transactivation of TGFBR1 stimulates the mRNA expression of proteoglycan synthesizing genes XYLT1 and CHST3. Biochimica et biophysica acta. Molecular cell research. 2020 Dec;1867(12):118848

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32920014

View Full Text